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INTERNAL PROPERTIES OF SOME RHEOLOGICAL MODELS 
OF A VISCOELASTIC FLUID-F 

M. A. BRUTYAN and P. L. KRAPIVSKII 

Zhukovskii 

The problem of the existence and non-existence ol’ solutions for certain models of an incompressible 

viscoelastic fuid is considered. It is found that the Taylor-Couctte and Hagcn-Poiscuille flows have no 

standard azimuthal and one-dimensional solutions within the framework of the series of Oldroyd models 01 

a viscoelastic fluid. It is found that in the critical cast, i.e. at the border between the existence and 

non-existence of solutions certain characteristic features of Couette and Poiseuille flows become universal 

and do not depend on the parameters of the models. 

I. TAYLOR-COUETTE FLOW 

CONSIDER the flow of an incompressible viscoelastic fluid between two coaxal cylinders of radii 
respectively, rotating with angular velocity o1 and w2. The fluid flow is described by the equations 

pdv/dt=div O-VP, div v=O 

The stress tensor u is connected with the deformation rate tensor D by the relations 

o+kF,b,(a)=211[D+hF,B(D)] 

F,b,(C,)=da/dt--go+&-a(Do+oD)+b(u: D)f+c(Tro)D 

F,g(D)=dDJdt-RD+DQ-2aDa+~(D : D)I 

D=‘I*[vv+(vv)q, Q=‘/*[Vv-(VV)T] 

RI and Rz 

(1.1) 

(1.2) 

which defines the generalized. eight-parameter Oldroyd model [ 11. H ere A is the relaxation time, A is the delay 
time, q is the coefficient of viscosity, I denotes the unit tensor. N, h. c. F(. p are the dimensionless parameters of 
the model, and D and 0 denote the symmetric and antisymmetric part of the tensor Vv. 

In the special case of h = 0 the Oldroyd model becomes the Maxwell model (the case when h = c = 0 and 
N = 1 corresponds to the supraconvective. and the case when h = c = 0 and a = -1 corresponds to the 

infraconvective Maxwell model). We also note that when CI = (Y = 1 and h = c = p = 0, the eight-parameter 
Oldroyd model reduces to the Oldroyd B-model. 

We shall seek the azimuthal solution, which has the following form in a cylindrical system of coordinates 

r. 0. z: 

In this case we obtain 

II Oi 
D= 

10 

v=(O, ‘J(r), 01, P”P(‘), o=o(r) (1.3) 

Substituting expressions (1.3) into the equations of motions (1.2). we obtain 

I 

dp PV’ 
=-_- rd 

r 
(1.4) 
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The first equation of (1.4) yields crre = -2mlr2 where m is an arbitrary constant. Using the previous results 
we obtain from Eqs (1.2), 

(1.5) 

Using the first two equations of (1.5) we can transform its last equation to the form 

~l~Ni~3+2,,tr-~2.‘.41:~~~u+2111r-’=0 

A-l-(cl-b)(u--c), B=l-(u-c)(a--$,I 

(1.6) 

Let us now investigate some special cases. For the Jeffrey model (h = 0) the azimuthal velocity is identical 

with the classical expression for a Newtonian fluid. For the Maxwell model (h = 0) Eq. (1.6) becomes quadratic 
and we can obtain from its solution the final expression for the azimuthal component of flow velocity 

,;=r( (t,*+ j (:$). 
_,,‘:++‘&_16m.)C<; 

U(r) _ -___-__ (1.7) 
4171hTA 

I(, 
We note that the boundary condition of adhesion on the inner cylinder holds, and the requirement that the 

boundary condition should hold on the outer cylinder determines the constant rn. 
The solution (1.7) exists only in the case when the expression under the radical sign is non-negative. Let us 

study in more detail the case of an isolated rotating cylinder, Rz + ~0. Integrating relation (1.7) we obtain (De is 

the Deborah number) 

f(RJ -f(r) I 1 + ----z- ; 

De)‘A 

2 

-- m(r) +arctg CD(r) 

(1.8) 

Q)(r)== 

The obvious boundary condition v = 0 and r = M yields the relation 

Da r1 -n/2-j(If,) (1.9) 

which defines implicitly the constant m as a function of the Deborah number, the Reynolds number 
Re = pw, R,*/q and the parameter A. Note that the functionf(r) is defined for ra R and increases from 1 to n/2 
as r increases from R to infinity. Thus from (1.9) we find that the standard solution of type (1.3) exists for the 

Maxwellian fluid within the range of Deborah numbers: 

OsDe<(n/2-~)A-“’ (1.10) 

For small values of the Deborah numbers, the moment acting on the cylinder is given by the following 

expression: 

[ 

i 
~=-2xr2a,e=4nm=4n~0,R,z 

7 
1 - -A De2 +-(.4 De*)*+. . . 

3 30 1 (1.11) 

We note that when the De number increases the dimensionless moment u = A4/4~qo, R,’ decreases from 

unity (for a Newtonian fluid) to (rr - 2))’ = 0.876 on the upper limit of the boundary of existence. The drop in 
the value of the torsional moment can be seen directly from the asymptotic expansion of (1.11) for small De 
numbers; when the De numbers are arbitrary, this follows from an elementary analysis of the condition for 
(1.9) to be solvable. 

In the previous results we assumed implicitly that the parameter A is non-negative, and this indeed is the case 
in most commonly used rheological models [l]. For completeness a similar analysis was carried out for the case 
when A < 0. It was found that in this case a solution exists everywhere and the torsional moment increases as 
the value of the Deborah number increases. 

Thus we have shown that azimuthal Couette flow exists in the case when A>O, over a limited range of 
Deborah numbers. 
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2. POISEUILLE FLOW 

Let us consider a steady, unidirectional How of viscoelastic fluid in a pipe of arbitrary cross-section. induced 
by a pressure gradient. We have for such a flow 

(2.1) 

Here x, I’, z are Cartesian coordinates (the z axis is directed along the pipe axis), w, = ~w/~~ and w,. = &~/;?v. 
Expressions (2.1) suggest that the stress tensor should be sought in the similar form 

After substituting these expressions into the last two relations of (1.2) we see that the “derivatives” F,rhc(u) 
and F,+(D) have the required form, provided that the following conditions hold: 

a-t, b-0, a= j, fi-0 (2.2) 

Note that the Oldroyd model with constraints (2.2) is a one-parameter generalization of the Oldroyd 
B-model (the latter corresponds to the case c = 0). 

Henceforth, we shall consider precisely the Oldroyd model with constraints (2.2). In this case we find, for the 
equations of state, 

u**2=T)i%Y, o,=2q(b-X) (Yw)*l[t+cAc2(vw)‘l 

(2.3) 
i = I1-~cA1(Vw)2]/[ f+cX~(Vw)‘J 

Substituting expressions (2.3) into the equation of motion (1.1) we obtain 

(2.4) 

Note that (2.4) can be interpreted as the equation of continuity for potential flows of an ideal compressible 
fictitious gas with sources. Here j will be regarded as the density of the fictitious gas. The longitudinal velocity 
MJ(X, y) of how of a viscoelastic fluid serves as the potential, so that q = VW = (w,, wy) is the velocity of the 
fictitious gas; the constant pressure gradient is then regarded as the source intensity. This curious mathematical 
analogy between unidirectional viscoelastic incompressible flows and compressible flows of a fictitious gas is 
found to be useful in a qualitative analysis of the properties of a viscoelastic fluid. 

Let us now analyse the problem of the existence of solutions of Eq. (2.4). For the Oldroyd B-model the 
parameter c = 5, so that the density of the fictitious gas is constant and Eq. (2.4) reduces to Poisson’s equation. 
It follows that the unidirectional viscoelastic flows of the Oldroyd B-fluid are described by the same equation as 
the unidirectional flows of a classical field. A solution may not exist only when cf0, more more accurately 
when c>O. In this case Eq. (2.4) takes the following form for the Maxwellian fluid (x = 0): 

t’. (q/( l-m.29’)) -q-‘dpldr 

Integrating Eq. (2.5) over the pipe cross-section area S, we obtain 

a 
_______ dl _ ’ dp q,n 

f + 429’ 3 dz 

where n is the unit vector of the outer normal. Using the inequality 

ql(i+cAcfq~)<i/(z)‘Z) 

(2.5) 

and denoting by L the perimeter of the pipe cross-section. we arrive at the necessary condition for a solution to 
exist 

OSZDeGi/t’c, De=2SL-‘h( -q-‘dp/dz) (2.6) 

We note that the condition for a unidirectional Poiseuille flow (2.6) to exist resembles the condition for 
Couette How (1.10) to exist. We also note that when the constraints (2.2) imposed on the parameters of the 
Oldroyd model are taken into account, the constants A and c become identical. 
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FIG. 1. 

In the case of a circular pipe the necessary condition for solution (2.6) to exist also becomes sufficient. This 
follows from the explicit solution of the initial equation (2.4) 

f?= -!-~~F(r)-*~. n, = (-~~~c~)-‘, F(r)+ -(;I-,’ 
c 

(2.7) 

We see that the solution exists only for pipes of relatively small radius R(RsR,), in accordance with 
condition (2.4). It is interesting to note that the viscoeiastic Poiseuihe flow in a circular pipe of critical radius 
R = R, corresponds to the flow of a fictitious gas whose flow velocity at the pipe walls is found to be equal to the 
velocity of sound q = - (cA*)-“~. The non-existence of a solution in the present problem in terms of the 
fictitious gas, resembles the pipe blocking effect known in gas dynamics. 

The longitudinal flow velocity of a viscoelastic Maxwellian fluid can be found directly from (2.7) 

& 
W(T)tz - 

y’cl2 I F(r)-F(R)-I*% 
I+F(R) 3 

A graph depicting the relationship w = W(T) at R/R, = 0.25 (the solid line) and R/R,, = 1 (the dashed line) is 
given in Fig. 1. 

The flow rate through the pipe is given by the expression 

R 

Q- jw%rdr= n I&3 ---4~-F(R)J2[i+2F(~)] 

0 6 )‘xz 

The figure also shows the relation between the ratio Q/Q, and the dimensionless radius of the pipe RIR, 

Q/Qo=‘ls[i+2F(R)]/[l+F(R) 1% 

where Qc is the flow rate in the case of a Newtonian fluid. We see that the flow rate of a Newtonian fluid is 
always smaller than that of a Maxwellian fluid. When I7 = R,, the ratio Q/Q, becomes independent of the 
parameters of the model and is equal to 5’3. 

We note that when ct0, the solution of the Poiseuilie problem always exists, and has the form 

He 
w(r)= ~ IId- +-J-h3 

G(R)+i G(r)-i 

)‘_c12 R 2 
-----I, 
G(R)-I G(~)fi 

Thus the existence or non-existence of the solution of the Poiseuille problem depends decisively on the sign 
of the parameter c, just as on the sign of the parameter A in the Couette problem. We also note that similar 
results can also be obtained for Poiseuille flow in a slot. In particular, the necessary condition of existence again 
has the form (2.6), with the Deborah number given by the relation 

De=HA(-rj-‘dpldz) 

where H is the width of the channel. We find that in this case the Row rate Q also exceeds the classical value of 
Q for a Newtonian fluid. For a channel of critical width H = R,. the ratio Q/Q{, is also universal and equal to 
6(t -7r/4) = 1.288. 
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In conclusion we note that the problems of the existence of solutions of equations of viscoelastic fluid for 
various types of flow has recently been given a considerable amount of attention (see e.g. [2-51). 
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